Serveur d'exploration sur la génomique des pucciniales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Uncovering leaf rust responsive miRNAs in wheat (Triticum aestivum L.) using high-throughput sequencing and prediction of their targets through degradome analysis.

Identifieur interne : 000236 ( Main/Exploration ); précédent : 000235; suivant : 000237

Uncovering leaf rust responsive miRNAs in wheat (Triticum aestivum L.) using high-throughput sequencing and prediction of their targets through degradome analysis.

Auteurs : Dhananjay Kumar [Inde] ; Summi Dutta [Inde] ; Dharmendra Singh [Inde, Australie] ; Kumble Vinod Prabhu [Inde] ; Manish Kumar [Inde] ; Kunal Mukhopadhyay [Inde]

Source :

RBID : pubmed:27699487

Descripteurs français

English descriptors

Abstract

MAIN CONCLUSION

Deep sequencing identified 497 conserved and 559 novel miRNAs in wheat, while degradome analysis revealed 701 targets genes. QRT-PCR demonstrated differential expression of miRNAs during stages of leaf rust progression. Bread wheat (Triticum aestivum L.) is an important cereal food crop feeding 30 % of the world population. Major threat to wheat production is the rust epidemics. This study was targeted towards identification and functional characterizations of micro(mi)RNAs and their target genes in wheat in response to leaf rust ingression. High-throughput sequencing was used for transcriptome-wide identification of miRNAs and their expression profiling in retort to leaf rust using mock and pathogen-inoculated resistant and susceptible near-isogenic wheat plants. A total of 1056 mature miRNAs were identified, of which 497 miRNAs were conserved and 559 miRNAs were novel. The pathogen-inoculated resistant plants manifested more miRNAs compared with the pathogen infected susceptible plants. The miRNA counts increased in susceptible isoline due to leaf rust, conversely, the counts decreased in the resistant isoline in response to pathogenesis illustrating precise spatial tuning of miRNAs during compatible and incompatible interaction. Stem-loop quantitative real-time PCR was used to profile 10 highly differentially expressed miRNAs obtained from high-throughput sequencing data. The spatio-temporal profiling validated the differential expression of miRNAs between the isolines as well as in retort to pathogen infection. Degradome analysis provided 701 predicted target genes associated with defense response, signal transduction, development, metabolism, and transcriptional regulation. The obtained results indicate that wheat isolines employ diverse arrays of miRNAs that modulate their target genes during compatible and incompatible interaction. Our findings contribute to increase knowledge on roles of microRNA in wheat-leaf rust interactions and could help in rust resistance breeding programs.


DOI: 10.1007/s00425-016-2600-9
PubMed: 27699487


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Uncovering leaf rust responsive miRNAs in wheat (Triticum aestivum L.) using high-throughput sequencing and prediction of their targets through degradome analysis.</title>
<author>
<name sortKey="Kumar, Dhananjay" sort="Kumar, Dhananjay" uniqKey="Kumar D" first="Dhananjay" last="Kumar">Dhananjay Kumar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215</wicri:regionArea>
<wicri:noRegion>835215</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dutta, Summi" sort="Dutta, Summi" uniqKey="Dutta S" first="Summi" last="Dutta">Summi Dutta</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215</wicri:regionArea>
<wicri:noRegion>835215</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Singh, Dharmendra" sort="Singh, Dharmendra" uniqKey="Singh D" first="Dharmendra" last="Singh">Dharmendra Singh</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215</wicri:regionArea>
<wicri:noRegion>835215</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>QAAFI, Centre of Plant Science, The University of Queensland, Brisbane, QLD, 4072, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>QAAFI, Centre of Plant Science, The University of Queensland, Brisbane, QLD, 4072</wicri:regionArea>
<wicri:noRegion>4072</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Prabhu, Kumble Vinod" sort="Prabhu, Kumble Vinod" uniqKey="Prabhu K" first="Kumble Vinod" last="Prabhu">Kumble Vinod Prabhu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012</wicri:regionArea>
<wicri:noRegion>110012</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kumar, Manish" sort="Kumar, Manish" uniqKey="Kumar M" first="Manish" last="Kumar">Manish Kumar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215</wicri:regionArea>
<wicri:noRegion>835215</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mukhopadhyay, Kunal" sort="Mukhopadhyay, Kunal" uniqKey="Mukhopadhyay K" first="Kunal" last="Mukhopadhyay">Kunal Mukhopadhyay</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India. kmukhopadhyay@bitmesra.ac.in.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215</wicri:regionArea>
<wicri:noRegion>835215</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:27699487</idno>
<idno type="pmid">27699487</idno>
<idno type="doi">10.1007/s00425-016-2600-9</idno>
<idno type="wicri:Area/Main/Corpus">000351</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000351</idno>
<idno type="wicri:Area/Main/Curation">000351</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000351</idno>
<idno type="wicri:Area/Main/Exploration">000351</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Uncovering leaf rust responsive miRNAs in wheat (Triticum aestivum L.) using high-throughput sequencing and prediction of their targets through degradome analysis.</title>
<author>
<name sortKey="Kumar, Dhananjay" sort="Kumar, Dhananjay" uniqKey="Kumar D" first="Dhananjay" last="Kumar">Dhananjay Kumar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215</wicri:regionArea>
<wicri:noRegion>835215</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dutta, Summi" sort="Dutta, Summi" uniqKey="Dutta S" first="Summi" last="Dutta">Summi Dutta</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215</wicri:regionArea>
<wicri:noRegion>835215</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Singh, Dharmendra" sort="Singh, Dharmendra" uniqKey="Singh D" first="Dharmendra" last="Singh">Dharmendra Singh</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215</wicri:regionArea>
<wicri:noRegion>835215</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>QAAFI, Centre of Plant Science, The University of Queensland, Brisbane, QLD, 4072, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>QAAFI, Centre of Plant Science, The University of Queensland, Brisbane, QLD, 4072</wicri:regionArea>
<wicri:noRegion>4072</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Prabhu, Kumble Vinod" sort="Prabhu, Kumble Vinod" uniqKey="Prabhu K" first="Kumble Vinod" last="Prabhu">Kumble Vinod Prabhu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012</wicri:regionArea>
<wicri:noRegion>110012</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kumar, Manish" sort="Kumar, Manish" uniqKey="Kumar M" first="Manish" last="Kumar">Manish Kumar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215</wicri:regionArea>
<wicri:noRegion>835215</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mukhopadhyay, Kunal" sort="Mukhopadhyay, Kunal" uniqKey="Mukhopadhyay K" first="Kunal" last="Mukhopadhyay">Kunal Mukhopadhyay</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India. kmukhopadhyay@bitmesra.ac.in.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215</wicri:regionArea>
<wicri:noRegion>835215</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Planta</title>
<idno type="eISSN">1432-2048</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence (MeSH)</term>
<term>Conserved Sequence (genetics)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Gene Library (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>High-Throughput Nucleotide Sequencing (methods)</term>
<term>MicroRNAs (genetics)</term>
<term>MicroRNAs (metabolism)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (microbiology)</term>
<term>RNA Stability (genetics)</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Messenger (metabolism)</term>
<term>RNA, Plant (genetics)</term>
<term>RNA, Plant (metabolism)</term>
<term>Reproducibility of Results (MeSH)</term>
<term>Triticum (genetics)</term>
<term>Triticum (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN des plantes (génétique)</term>
<term>ARN des plantes (métabolisme)</term>
<term>ARN messager (génétique)</term>
<term>ARN messager (métabolisme)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Banque de gènes (MeSH)</term>
<term>Feuilles de plante (génétique)</term>
<term>Feuilles de plante (microbiologie)</term>
<term>Gènes de plante (MeSH)</term>
<term>Maladies des plantes (génétique)</term>
<term>Reproductibilité des résultats (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Stabilité de l'ARN (génétique)</term>
<term>Séquence conservée (génétique)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Séquençage nucléotidique à haut débit (méthodes)</term>
<term>Triticum (génétique)</term>
<term>Triticum (microbiologie)</term>
<term>microARN (génétique)</term>
<term>microARN (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>MicroRNAs</term>
<term>RNA, Messenger</term>
<term>RNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Conserved Sequence</term>
<term>Plant Diseases</term>
<term>Plant Leaves</term>
<term>RNA Stability</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN des plantes</term>
<term>ARN messager</term>
<term>Feuilles de plante</term>
<term>Maladies des plantes</term>
<term>Stabilité de l'ARN</term>
<term>Séquence conservée</term>
<term>Triticum</term>
<term>microARN</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>MicroRNAs</term>
<term>RNA, Messenger</term>
<term>RNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>High-Throughput Nucleotide Sequencing</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Leaves</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN des plantes</term>
<term>ARN messager</term>
<term>microARN</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Séquençage nucléotidique à haut débit</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Plant</term>
<term>Gene Library</term>
<term>Genes, Plant</term>
<term>Reproducibility of Results</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Banque de gènes</term>
<term>Gènes de plante</term>
<term>Reproductibilité des résultats</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Séquence nucléotidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>MAIN CONCLUSION</b>
</p>
<p>Deep sequencing identified 497 conserved and 559 novel miRNAs in wheat, while degradome analysis revealed 701 targets genes. QRT-PCR demonstrated differential expression of miRNAs during stages of leaf rust progression. Bread wheat (Triticum aestivum L.) is an important cereal food crop feeding 30 % of the world population. Major threat to wheat production is the rust epidemics. This study was targeted towards identification and functional characterizations of micro(mi)RNAs and their target genes in wheat in response to leaf rust ingression. High-throughput sequencing was used for transcriptome-wide identification of miRNAs and their expression profiling in retort to leaf rust using mock and pathogen-inoculated resistant and susceptible near-isogenic wheat plants. A total of 1056 mature miRNAs were identified, of which 497 miRNAs were conserved and 559 miRNAs were novel. The pathogen-inoculated resistant plants manifested more miRNAs compared with the pathogen infected susceptible plants. The miRNA counts increased in susceptible isoline due to leaf rust, conversely, the counts decreased in the resistant isoline in response to pathogenesis illustrating precise spatial tuning of miRNAs during compatible and incompatible interaction. Stem-loop quantitative real-time PCR was used to profile 10 highly differentially expressed miRNAs obtained from high-throughput sequencing data. The spatio-temporal profiling validated the differential expression of miRNAs between the isolines as well as in retort to pathogen infection. Degradome analysis provided 701 predicted target genes associated with defense response, signal transduction, development, metabolism, and transcriptional regulation. The obtained results indicate that wheat isolines employ diverse arrays of miRNAs that modulate their target genes during compatible and incompatible interaction. Our findings contribute to increase knowledge on roles of microRNA in wheat-leaf rust interactions and could help in rust resistance breeding programs.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27699487</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>04</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-2048</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>245</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2017</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Planta</Title>
<ISOAbbreviation>Planta</ISOAbbreviation>
</Journal>
<ArticleTitle>Uncovering leaf rust responsive miRNAs in wheat (Triticum aestivum L.) using high-throughput sequencing and prediction of their targets through degradome analysis.</ArticleTitle>
<Pagination>
<MedlinePgn>161-182</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00425-016-2600-9</ELocationID>
<Abstract>
<AbstractText Label="MAIN CONCLUSION" NlmCategory="UNASSIGNED">Deep sequencing identified 497 conserved and 559 novel miRNAs in wheat, while degradome analysis revealed 701 targets genes. QRT-PCR demonstrated differential expression of miRNAs during stages of leaf rust progression. Bread wheat (Triticum aestivum L.) is an important cereal food crop feeding 30 % of the world population. Major threat to wheat production is the rust epidemics. This study was targeted towards identification and functional characterizations of micro(mi)RNAs and their target genes in wheat in response to leaf rust ingression. High-throughput sequencing was used for transcriptome-wide identification of miRNAs and their expression profiling in retort to leaf rust using mock and pathogen-inoculated resistant and susceptible near-isogenic wheat plants. A total of 1056 mature miRNAs were identified, of which 497 miRNAs were conserved and 559 miRNAs were novel. The pathogen-inoculated resistant plants manifested more miRNAs compared with the pathogen infected susceptible plants. The miRNA counts increased in susceptible isoline due to leaf rust, conversely, the counts decreased in the resistant isoline in response to pathogenesis illustrating precise spatial tuning of miRNAs during compatible and incompatible interaction. Stem-loop quantitative real-time PCR was used to profile 10 highly differentially expressed miRNAs obtained from high-throughput sequencing data. The spatio-temporal profiling validated the differential expression of miRNAs between the isolines as well as in retort to pathogen infection. Degradome analysis provided 701 predicted target genes associated with defense response, signal transduction, development, metabolism, and transcriptional regulation. The obtained results indicate that wheat isolines employ diverse arrays of miRNAs that modulate their target genes during compatible and incompatible interaction. Our findings contribute to increase knowledge on roles of microRNA in wheat-leaf rust interactions and could help in rust resistance breeding programs.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kumar</LastName>
<ForeName>Dhananjay</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dutta</LastName>
<ForeName>Summi</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Singh</LastName>
<ForeName>Dharmendra</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>QAAFI, Centre of Plant Science, The University of Queensland, Brisbane, QLD, 4072, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Prabhu</LastName>
<ForeName>Kumble Vinod</ForeName>
<Initials>KV</Initials>
<AffiliationInfo>
<Affiliation>Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kumar</LastName>
<ForeName>Manish</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mukhopadhyay</LastName>
<ForeName>Kunal</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India. kmukhopadhyay@bitmesra.ac.in.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>10</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Planta</MedlineTA>
<NlmUniqueID>1250576</NlmUniqueID>
<ISSNLinking>0032-0935</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D035683">MicroRNAs</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018749">RNA, Plant</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015723" MajorTopicYN="N">Gene Library</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059014" MajorTopicYN="N">High-Throughput Nucleotide Sequencing</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035683" MajorTopicYN="N">MicroRNAs</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020871" MajorTopicYN="N">RNA Stability</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018749" MajorTopicYN="N">RNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015203" MajorTopicYN="N">Reproducibility of Results</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014908" MajorTopicYN="N">Triticum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Biotic stress</Keyword>
<Keyword MajorTopicYN="Y">Plant–pathogen interaction</Keyword>
<Keyword MajorTopicYN="Y">Small RNAs</Keyword>
<Keyword MajorTopicYN="Y">Stem-loop qRT-PCR</Keyword>
<Keyword MajorTopicYN="Y">Target genes</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>06</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>09</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>10</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>4</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>10</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27699487</ArticleId>
<ArticleId IdType="doi">10.1007/s00425-016-2600-9</ArticleId>
<ArticleId IdType="pii">10.1007/s00425-016-2600-9</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Funct Integr Genomics. 2012 Aug;12(3):465-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22592659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D33-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22080546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2008 Jul 1;24(13):1530-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18467344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2009;4(3):356-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19247285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2008 May 20;18(10):758-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18472421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jul;40(13):e103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22467211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Genet Genomics. 2015 Nov 20;42(11):625-637</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26674380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Apr;18(4):571-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18323537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Feb 03;11(2):e0148453</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26840746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2014;21(2):103-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24086083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2015 Oct;242(4):963-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26021606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Apr 23;9(4):e95800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24759739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 2012 Mar-Apr;103(2):268-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22287696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Jul 23;8(7):e69801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23936103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Feb;164(2):1077-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24335508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jan 1;33(Database issue):D121-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15608160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2015 Dec 29;15:301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26714456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2016 May;16(3):221-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26141043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Apr;17(4):196-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22365280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jun;36(10):3420-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18445632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2015 Jun;235:1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25900561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2016 Mar;29(3):156-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26900786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2007 Oct 31;14(5):227-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18056073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Funct Genomics. 2015 May;14(3):189-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24962995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D68-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24275495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W293-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2005;43:229-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16078884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2013 May;40(5):3713-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23277401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Nov 29;491(7426):705-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23192148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2007;23:147-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17506694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2016 May 27;16(1):124</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27234464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Jan 1;25(1):130-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19017659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Jan 14;15:25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24422852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2014 Aug;41(8):5385-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24844213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2013 Sep 23;13:140</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24060047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2015 Sep;15(5):587-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26174050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2006 Jan 1;289(1):3-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16325172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2014 Feb;41(2):889-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24390233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2015 Sep;15(5):523-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26113396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2014;52:495-516</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25090478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2008 Oct 1;24(19):2252-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18713789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Jun;159(2):721-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22508932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Jul 18;345(6194):1251788</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25035500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2007 Feb 14;2(2):e219</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17299599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2014 Jun;14(2):363-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24395439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 May 04;7:606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27200073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 24;124(4):803-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16497589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2017 May;17 (2-3):171-187</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27032785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2010;48:225-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20687832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2012 Oct;39(10):9373-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22736109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2016 Mar;29(3):165-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26867095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 May 22;14:142</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24885911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2012 May;13(4):414-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22471698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nucleic Acids. 2014;2014:570176</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25180085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Aug 1;28(15):2059-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22628521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2016 Jan 22;6(3):755-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26801649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2008 Feb 29;8:25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18312648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Dec;20(12):3186-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19074682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Jun 1;62(5):742-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20202174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2007 Nov;8(11):884-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17943195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Oct 4;342(6154):118-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24092744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2008 Aug;26(8):941-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18542052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(7):e40859</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22815845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010 Jun 24;10:123</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20573268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Jun 29;316(5833):1862-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17600208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Apr 21;312(5772):436-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16627744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Jun;188(2):263-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21467573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Sep 15;10(9):e0137773</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26372220</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>Inde</li>
</country>
</list>
<tree>
<country name="Inde">
<noRegion>
<name sortKey="Kumar, Dhananjay" sort="Kumar, Dhananjay" uniqKey="Kumar D" first="Dhananjay" last="Kumar">Dhananjay Kumar</name>
</noRegion>
<name sortKey="Dutta, Summi" sort="Dutta, Summi" uniqKey="Dutta S" first="Summi" last="Dutta">Summi Dutta</name>
<name sortKey="Kumar, Manish" sort="Kumar, Manish" uniqKey="Kumar M" first="Manish" last="Kumar">Manish Kumar</name>
<name sortKey="Mukhopadhyay, Kunal" sort="Mukhopadhyay, Kunal" uniqKey="Mukhopadhyay K" first="Kunal" last="Mukhopadhyay">Kunal Mukhopadhyay</name>
<name sortKey="Prabhu, Kumble Vinod" sort="Prabhu, Kumble Vinod" uniqKey="Prabhu K" first="Kumble Vinod" last="Prabhu">Kumble Vinod Prabhu</name>
<name sortKey="Singh, Dharmendra" sort="Singh, Dharmendra" uniqKey="Singh D" first="Dharmendra" last="Singh">Dharmendra Singh</name>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Singh, Dharmendra" sort="Singh, Dharmendra" uniqKey="Singh D" first="Dharmendra" last="Singh">Dharmendra Singh</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustFungiGenomicsV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000236 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000236 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustFungiGenomicsV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27699487
   |texte=   Uncovering leaf rust responsive miRNAs in wheat (Triticum aestivum L.) using high-throughput sequencing and prediction of their targets through degradome analysis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27699487" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RustFungiGenomicsV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 18:06:51 2020. Site generation: Fri Nov 20 18:08:25 2020